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ABSTRACT 

We consider positive solutions of the initial value problem for u, = Au + u p 
in cones D ~ R + • fl  C_ R ~ (fl _ S ~-  t). In an earlier paper, we determined a 
critical exponent p*(fl) with the following properties: (a) if I < p < p*, then 
all nontrivial solutions blow up in finite time (blowup case); (b) ifp > p*, then 
there are nontrivial global solutions (global existence case). Here we show that 
p* belongs to the blowup case. This generalizes a well-known result for the 
critical exponent p* = 1 + 2/N in D = W r 

Let D c R N be an unbounded  domain.  We consider  the init ial-boundary 

value problem 

ut = A u  + u p in D • [0, T), 

(P) u(x, t) = 0 on 019 X [0, T), 

u(x, O) = Uo(X) on D,  

u is bounded  at Ix I = oo, 

where Uo >= 0 and p > 1. 
In the case D -- R N, a classical result o f  Fuji ta [3] says: 
(A) I f  1 < p < 1 + 2/N, there are no nontrivial nonnegative solutions of(P).  
(B) I f  p > l + 2/N, global, positive solutions of  (P) exist. (That is, if  

0 ~ Uo(X) < J(4rtto)-N/2exp( -- Ix IV4to) 

for some to > 0 and some J = J(t0), sufficiently small, then u is global.) 
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Case (A) is called the blowup ca~e; (B) is called the global existence case. The 
number 

p* - -  1 + 2 / N  

is called the critical exponent. Several authors [ 1, 5, 7, 14] have shown that p* 
belongs to the blow up case. 

Fujita asked the following question: If R N is replaced by the exterior of  a 

bounded domain, is p* still the critical exponent? (The answer is yes and this 

has been established in [2].) The question then arises, if both the domain D and 

R N - D are unbounded, what happens to p*? Meier [ 12] gave a partial answer 
when, for fixed k U { 1 , . . . ,  N}, 

D = Dk = { x  U R  N I x l  > 0 . . . .  , xk > 03.  

He found that p* = 1 + 2/ (N + k). He did not prove that p* belongs to the 
blow up case. 

Meier's result in turn led the authors of [2] to consider general cones. We 
turn next to a brief discussion of the results for cones. 

By a cone D in R N with vertex at 0, we mean the following: Let f~ c S N- ~ be 

an open connected subset of  the unit N sphere, then D has the form 

{ x e R  N I x  ~ O , x / I x l  U ~ } .  

We let r = Ix l. For any x ED,  we write x = (r, 0) in "polar" coordinates. 
Let oal be the smallest Dirichlet eigenvalue for the Laplace Beltrami operator 

Ao on fL Let 7_+ denote the positive and negative roots of  

Let 
7(), + N -- 2) - o )  I - -  0. 

p*(00,) = 1 + 2/(N + 7+) = 1 + 2/( -- 7-). 

In [2] it was shown that if 1 < p < p*(tot), p is in the blow up case (A). There 

the authors also showed that if p was sufficiently large, p was in the global 

existence case. In [10], this result was sharpened and it was shown that if 
p > p*(o~0, then p is in the global existence case (B). 

It is the purpose of this paper to show that p*(o~l) is also in the blow up case 
(Theorem 3 below). 

We will do this by modifying the arguments of Weissler [14] for the case 
D = R N. Weissler's proof made strong use of the fact that the L 1 norm of the 
Green's function for the heat equation in R N is independent of time. This is not 
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true for other domains and therefore his arguments must be substantially 
modified. 

This result has also been established by Kavian [6] but only in the case of 
convex cones (cones for which Q is a convex subset of S u-  t in the geodesic 
metric). 

Let {g.(O)}~~ denote an orthogonal sequence of Dirichlet eigenfunctions 
for Ae on Q corresponding to the sequence {o9. } of Dirichlet eigenvalues for 
this problem. We shall normalize g~ so that 

f ta gt(O)dSo = 1. 

(We may always take g~ > 0 in Q since A0 (with Dirichlet boundary conditions) 
is a self adjoint second order elliptic operator on H~(E~). See Courant and 
Hilbert, Methods of Mathematical Physics, Vol. I, p. 452.) 

Throughout this paper, computable constants C or Ci, i - -0 ,  1, 2 , . . . ,  
depend upon r g,, N. This dependence is not explicitly indicated. When they 
depend upon other variables, we indicate that dependence in the argument list. 

Define 
v, = [�88 - 2) 1 + o9,11/2 

for n = 1, 2, 3 , . . . .  Then the Green's function for the linear heat equation in 
the cone takes the following form for some appropriate sequence {c, }~=1 of 
positive constants: 

4t , , - I  

where ~, 0 ~ fl and 

l) z - -o+ ,  
Iv(t)=(�89 [e*/~-~ z ~ + ~ .  

denotes the usual modified Bessel function. The formula for G can be obtained 
by expanding the inverse Laplace transform of the solution of the heat 
equation in a Fourier-Bessel series and using the identity 

o~ l e x p (  r2 + p2] [ {rP] fo e-~tJv"(x/~r)Jv"(x/--2P)d2=t ~ ]" "\ft] [13]. 

Then we have the following inequality for G: 
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(E l )  

aG(r,  O, p, #, t)u 

-(N-2)a[ [rp~ e_(r2+.+)/4t~/,(Cj ) f n ~P dS. = C0(2t) -l(rp) v \2t] 

> C t  - ( r  + Nl2)(r p )  r e -  ~,~ +p,v4,r = 1 

(E2) 

Finally, for any nonnegative function a(r), we have 

II G(.,-,  P0, ~ ;  to)a(. )r IIL'<o) 

(E3) 

When a(r) ~- r ~, this last integral is simply 

so that 

= f o  G(r, O; Po, r to)a(r)cG(O)r N- ldSodr 

(r fo | > Ct~-tr+N/2)p~ e(-pg/4to). ~111 a(r)r r+N- le-,2/%dr" 

�89 a + y +  2 N) (4to)(,+r+m/2 

u > w and, by (El), we have, after changing the order of 

f a u(r, O, t)Cfi(O)dSo 

> f a  w(r, O, t)9/l(O)dSo 

=>ct-~r+"g2ae-'2'4'fo~176 pr +"- l er ' r162 

Consequently 
integration, 

where we have set y = y+ and v = v I = ~1 "JI- �89 -- 2) and where C is a com- 
putable constant. The second line follows from the series representation for 
I,(z). 

Now let w(r, O, t) be the solution of the linear heat equation, wt = Aw, with 
the same initial and boundary values as u. Then, by "variation of parameters' ,  

fo's u ( r , O , t ) - - w ( r , O , t ) +  G(r ,O,p ,~; t - t / )uP(p ,# , t / )p~- ldpdScd~ 

where 

w(r, o, t)= J o 6(r, O, p, #, t)uo(p, #)p"-'dS, dp. 
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II G(. , . ,  Po, r to)a(. )~tl(. ) IIL' o) = C(a)to("-Y)/2Pg e -P~/4to~(/l(~O ). 

We now establish the following Lemmas: 

LnMMA 1. For all tE(O, T) where T is the length o f  the existence interval 
( T < oo ), we have 

w(r, O, t) < ((p - 1)t) -1lip-I) 

PROOF. 

u_(r, 0, t) = (w-(P-l)(r, O, t) - t (p  - 1)) -1 / (p- I )  

is seen to be a subsolution of (P) and consequently cannot blow up before u 

does. 

LEMMA 2. I f  u is a global solution of(P), then 

f o  e-:/4tryuo(r ' < p ) t t u + r ) / 2 - l / ( p - I ) )  0)~l(0)dx C( 

for some constant C( p ). 

Suppose p < p*. Then letting t --- ~ ,  we see from this lemma that Uo------ 0. We 

thus recover the result of  [2] to which we alluded in the introduction. 
To prove the lemma, we see that from I_emma 1, 

( p  - -  1) - I / ( p - I )  ~ tl/tP-1)w(x/~t, O, t). 

Integrating over fl  with respect to ~fi(O)dSo, we see from (E2) that 

(p  - -  1 ) - l / t p - l )  

:/L >-_ Ct~/~P- ~)t-~y + N)/2 e -1/4 f + N- ~e(-P2/40~I(~)Uo(p, O)dpdS,. 

This implies the result. 

REMARK. I fu  is a global solution, we may replace u0(p, 0) by u(p,  O, to) for 

any to > 0 in view of the autonomous nature of  (P). 

TH~.OREM 3. I fp  = 1 + 21(N + ?) = 1 -- 217_, theproblem(P)possessesno 
nontrivial, nonnegative global solution. 

PROOF. Let p ffi 1 + 2/(N + y). We have, if u is global, for all t > 0, from 

Lemma 2 and the variation of  parameters formula, 
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C(p)  >_- II rru( r, O, t)q/~(O) IIL,<o~ 

(s ) > r'G(r,O, p, gp; t - s)(u(p, ok, s))pp"-IdpdS, ds q/~(O) 

= fo' fo= fo(u(p,r . 
• ( s L rrq6(O)G(r, O,p, ck; t - s)rU-'drdSo) pl~-'dpdXods. 

Thus, from (E3) 

fot f f fo C ( p )  >= Cl (u(p, #, s ))Pe-'~ + r- l dpdS~ls. 

From Jensen's  inequality, we have 

C ( p ) >= C~ fot f o~ ( . f  ta u (p , ep, s )~(  tk)ds,)P e-P~/~t-'pl~ + ' -  ' dpds, 

since ~ta ~ldS, = 1. Thus, raising both sides of  (E2) to the p th  power  we find 

that 

C(p)  = > C 2 ( p ) ; o  t .~o('~176 

where 

C ~ ( s, Uo)[S - r + m2)pre -p2/4q ppr + N- ' e -p2'4(t -S)dpds 

C3(s, y, N, Uo, ~r [~J0 ~176 [~Jfl R~ + U- l e-R'/4Suo( R, #)~ul(#)dS,,dl~ 

>~ C4(to, UO) 

provided 0 < to < s, where C4 > 0 for nontrivial initial data uo. Thus, for t > to, 

there is C5 such that 

Cs( p , uo, to) ~ f ti ( 50= p~tp + l)+ N- l e-P~tP't-')+ sy4s't-S)dp) s - p'r + m2,ds. 

I f  we fix t~E(0, 1) and assume t o < s < ( 1 - J ) t ,  then J t / ( t - s )  < 1 and 

s/(t - s) < 1/t~ - 1. Therefore 

s(t - s) s > Js 
p(t - s) + s p + s/(t - s )=  J(p  - l) + l 

Consequently,  there is C6 such that 

f 
(1-6)t 

C6( p, Uo, to, J ) > s - o~r + m2) + ~r~ o + i )  + roads 
Jto 

in view o f  the change of  variables tr -- [M(t~( p - 1) + 1)] 1/2s lap. However ,  
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Thus, 

- p(? + N/2)  + �89 + l )  + N )  = - �89 + �89 
(p  - 1)N 

2 

( p - l )  
- -  - -  ( N +  ?). 

2 

fO  -6)t 
C6 > s-(P-I• ---" + oo 

Jto 

as t --- + oo as long as �89 - 1)(N + y) -<- 1. This is the desired contradiction. 

REMARK. I f u  p is replaced by h(t)u p where h(t)  > 0 and h(t)  ~, t q (q > - 1) 

as t ~ oo, the above proof may be modified to show that there are no global 

(nontrivial) solutions if 

1 < p  < 1 + ( 2  + 2 q ) / ( N +  ~). 

In this case, the right hand side in Lemma 1 is replaced by 

[ ( p - 1 ) S ~ h ( s ) d s ]  -l/(p-l) and the fight hand side in Lemma 2 by 

C(p,h) . t (N+'/2.(S~h(s)ds)-~/(P-1).  Thus, as a first step in the proof of  

Theorem 3, we have the inequality 

C ( p , h )  

>-_ rrG(r, O,p, ~, t - s)h(s)(u(p,  ~, s))ppN-ldpdS,  ds r 

By the same arguments as above, we obtain a contradiction by concluding that 

f 
(1-6)t 

C6(P, Uo, to, h) >= h(s) .s - (P- ' (N+' /2ds .  
~I to 

We were unable to show that if u ~ is replaced by r 'u P, a >= O, then 

2 + a  
p * = l + - -  

N + y  

belongs to the blowup case. We have already shown, [10], that this is the 
critical exponent in this case. 

REMARK. In [2], it was shown that if D is the exterior of  a bounded 

domain, then the critical exponent p* = 1 + 2 /N  as in the case considered by 

Fujita. However, it has yet to be shown that p* belongs to the blowup case as it 

does in the case D = R N. 
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